
$$E + S \underset{k_{-1}}{\Leftrightarrow} ES \xrightarrow{k_2} E + P$$

- 1. Define the initial rate in terms of concentrations of V_{max} , [S]_o, and K_{M} .
 - **a.** $\frac{d[P]}{dt} =$
 - **b.** $\frac{d[ES]}{dt} =$
 - c. Use the steady-state approximation to solve for [ES]

- d. Replace $\frac{(k_{-1}+k_2)}{k_1}$ with K_M .
- e. Write an expression for [E]_{total}.
- f. Use your expression from (e) to get an expression for [ES] in terms of K_M , $[E]_{total}$, and $[S]_o$.
- g. Plug your expression for [ES] into (a).
- 2. Determine values of V_{max} and K_{M} from the graph. Include units.

